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SUMMARY

A pulsating laminar flow of a viscous, incompressible liquid in a rectangular duct has been studied. The
motion is induced under an imposed pulsating pressure difference. The problem is solved numerically.
Different flow regimes are characterized by a non-dimensional parameter based on the frequency (v) of
the imposed pressure gradient oscillations and the width of the duct (h). This, in fact, is the Reynolds
number of the problem at hand. The induced velocity has a phase lag (shift) with respect to the imposed
pressure oscillations, which varies from zero at very slow oscillations, to 90° at fast oscillations. The
influence of the aspect ratio of the rectangular duct and the pulsating pressure gradient frequency on the
phase lag, the amplitude of the induced oscillating velocity, and the wall shear were analyzed. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of unsteady pulsating flows is of practical engineering importance. High speed
(turbulent) pulsating flows occur in turbomachinery, rotor blade aerodynamics, reciprocating
piston-driven flows, etc. Numerous experimental investigations were focused on fundamental
studies of fully developed periodic pipe flows with sinusoidally varying pressure gradients (or
flow rates). Low speed (laminar) pulsating flows were studied in order to analyze the flows
through small pipes or in the blood circulation systems. Laminar flows are relatively simple for
analytical (or numerical) analysis and are a natural choice to provide basic studies of
fundamental hydrodynamic effects in pulsating flows.

An incompressible viscous fluid, which is forced to move under a pulsating pressure
difference in a duct, has a number of characteristic properties. Some features of such a flow are
similar to those occurring in the boundary layer on a body performing reciprocating harmonic
oscillations. This is an extension of the problem of the boundary layer when a viscous fluid is
bounded by an infinite plane surface that executes a simple harmonic oscillation, with
frequency v, in its own plane. The latter is the classic problem of the flow near an oscillating
flat plate, which was first studied by Stokes [1]. For this type of flow, transverse waves occur
in a viscous fluid, with the velocity perpendicular to the direction of propagation. Stokes
introduced a new length scale, the depth of penetration of the viscous wave, d= (2n/v)1/2. The
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amplitude of the transverse waves is rapidly damped by the factor exp(−y/d) as one moves
away from the solid surface whose oscillations generate the waves. In addition, an oscillating
fluid layer has a phase lag, f=y/d, with respect to the motion of the wall, which depends on
a distance y, from the wall.

In the present study, the authors consider a pulsating laminar flow of a viscous, incompress-
ible liquid in a rectangular duct. The influence of the duct aspect ratio, the imposed frequency
and the amplitude on the phase lag and the amplitude of the induced oscillating flow are
analyzed.

2. PULSATING FLOW THROUGH A DUCT

Considered is an incompressible liquid, forced under a pulsating pressure difference, to move
in a rectangular duct of constant cross-sectional shape: 05x5a, 05y5h. A schematic
drawing of the duct is presented in Figure 1. It is supposed that the motion is in the z-direction
only, so that the velocity vector is V= [0, 0, u(x, y, t)]. This means that the velocity is solely
axial, and hence, the flow is fully developed. The governing equation is

(u
(t

=n92u−
1
r

(p
(z

,
(p
(z

= −
gp

L
sin(vt), u �G=0, (1)

where 92 is the two-dimensional Laplacian operator and G denotes the boundary of the duct.
It is convenient to use complex notation. Introducing a velocity function f(x, y, t)=
u(x, y, t)+ i6(x, y, t), Equation (1) is rewritten in the following form:

(f
(t

=n92f+
igp

rL
e− ivt, f �G=0, (2)

when the velocity is the real part of the function f(x, y, t) i.e., u(x, y, t)=Real[ f(x, y, t)]. In
Equation (2), gp and v are the amplitude and the frequency of the pressure difference
oscillations respectively. First, a one-dimensional case of a flow between two parallel plates
(05y5h), which yields a simple solution in a closed form, is considered, 6iz.

f(y, t)=
gp

rLv
e− ivt�cos k(y−h/2)

cos(kh/2)
−1

n
, k= (1+ i )a, a= (v/2n)1/2. (3)

Separating the real part of the function f(y, t) gives the velocity u(y, t)=Real[ f(y, t)] in the
form

u(y, t)=A(y) cos(vt)+B(y) sin(vt), (4)

Figure 1. Schematic of a duct.
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where

A(y)=
gp

rLv

�cosh(ay) cos a(h−y)+cos(ay) cosh a(h−y)
cosh(ah)+cos(ah)

−1
n

(5)

and

B(y)=
gp

rLv

sinh(ay) sin a(h−y)+sin(ay) sinh a(h−y)
cosh(ah)+cos(ah)

. (6)

The solution given by Equation (4) can be rearranged by introducing the induced velocity
amplitude gu, and the phase shift (lag) fu, with respect to the imposed pressure oscillations, 6iz.

u(y, t)=gu sin(vt+fu),

gu(y)= [A2(y)+B2(y)]1/2, tan fu(y)=
A(y)
B(y)

, (7)

where A(y) and B(y) are defined by Equations (5) and (6) respectively. Integrating the solution
given by Equation (7) over the interval 05y5h results in the induced average velocity Um

Um=gU m
sin(vt+fU m

), (8)

Here gU m
and fU m

are the amplitude and the phase lag of the average velocity Um. From
Equation (7), the shear stress at the wall is

twall=m
(u
(y
)
y=0

=gt sin(vt+ft). (9)

In Equation (9), the relative amplitude of the wall shear stress gt=gt(y), is introduced, and
also its phase lag with respect to the imposed pressure oscillation, ft=ft(y), which depend on
the distance from the wall y. The expressions given by Equations (7)–(9) are the solution of
the one-dimensional problem and these will be referred to in the following, when the features
of a pulsating flow in a duct will be analyzed.

Substituting

f=
�

−
gp

rLv
+g

�
e− ivt (10)

into Equation (2) gives the following for the function g(x, y)

92g+ i
v

n
g=0, g �G=

gp

rLv
. (11)

As the next step, g(x, y) is decomposed in terms of a pair of real-valued functions of the real
variables x and y

g(x, y)=U(x, y)+ iV(x, y). (12)

After replacing g(x, y) by Equation (12), the real and the imaginary parts of Equation (11)
read

92U−
v

n
V=0, U �G=

gp

rLv
,

92V+
v

n
U=0, V �G=0. (13)
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The system of equations (13) has been solved numerically using a method based on a
high-order-accurate discretization scheme, recently developed by Arad et al. [2,3]. The numer-
ical method is discussed in the next section. From Equations (10) and (12), separating the real
part of the function f(x, y, t) yields, for the induced velocity u(x, y, t),

u(x, y, t)=A(x, y) cos(vt)+B(x, y) sin(vt), (14)

where

A(x, y)=U(x, y)−
gp

rLv
, B(x, y)=V(x, y). (15)

The solution given by Equation (14) can be rearranged by introducing the amplitude gu, and
the phase shift (lag) fu, with respect to the imposed pressure oscillations, 6iz.

u(x, y, t)=gu sin(vt+fu), (16)

gu(x, y)= [A2(x, y)+B2(x, y)]1/2, tan fu(x, y)=
A(x, y)
B(x, y)

, (17)

where A(x, y) and B(x, y) are given by Equation (15). Integrating Equation (16) over the
cross-section 05x5a, 05y5h yields the induced cross-sectional mean velocity Um, which
also oscillates and can be expressed in the form given by Equation (8): Um=gU m

sin(vt+
fU m

).

3. NUMERICAL METHOD

Equation(s) (13) are coupled Poisson equations. In 1941, Kantorovich and Krylov presented in
a Russian edition of their book, the sixth-order accuracy nine-point discretization scheme for
Poisson’s equation. In 1964, the English edition of their book appeared [4]. Young and
Dauwalder [5] studied numerous such high-order nine-point schemes in great details. For the
general linear elliptic second-order partial differential equation, Young and Gregory [6]
derived high-order discretization methods. They gave complete formulae and summarized the
coefficients in a table for the high-order nine-point discretization scheme of a quite general
type. For example, the sixth-order accuracy scheme, developed in Kantorovich and Krylov [4]
for the Poisson equation, can be derived as a particular case from the general Young and
Gregory scheme [6]. A considerable contribution in developing high-order-accurate finite
difference discretization schemes for elliptic partial differential equations was done by
Manohar and Stephenson [7–9]. The sixth-order nine-point discretization stencil for the
Poisson equation with the Dirichlet boundary conditions on a rectangular domain was derived
by Manohar and Stephenson [7].

The problem at hand is reduced to the system of equations (13), and its formulation is valid
for a duct with an arbitrary cross-sectional shape. In this study, an ad hoc high-order-accurate
discretization scheme, recently developed by Arad et al. [2,3], is applied for the system of
equations (13), defined on a rectangular domain. The discrete equations for Equation(s) (13)
on a nine-point discretization stencil are written in the form

aUi, j+bSi, j
U(xy)+cSi, j

U(x)+dSi, j
U(y)=rU, (18a)

aVi, j+bSi, j
V(xy)+cSi, j

V(x)+dSi, j
V(y)=rV, (18b)
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where

Si, j
g(xy)=gi−1, j−1+gi−1, j+1+gi+1, j−1+gi+1, j+1,

Si, j
g(x)=gi−1, j+gi+1, j, Si, j

g(y)=gi, j−1+gi, j+1. (19)

Equations (13) are coupled Poisson equations and their discrete form, Equations (18a,b), on a
nine-point discretization stencil was derived in [4] using a high-order-accurate discretization
scheme developed by Arad et al. [3]. The coefficients a, b, c, d in Equations (18a,b) are defined
by

a= −
5
3
� 1
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2 +

1
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2

�
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1
12

� 1
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2 +
1
hy

2

�
, c=

1
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2 −2b, d=
1
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2−2b. (20)

The right-hand-side terms in Equations (18a,b) are defined by
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�

−
v2

n2 U,
v

n
V
�
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�

−
v2

n2 V, −
v

n
U
�

, (21)

where
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1
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2 −hy
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For hx=hy=h, the discretization coefficients reduce to

a= −
10
3h2, b=

1
6h2, c=d=

2
3h2,

r( f, g)=gi, j+
2h2

4!
fi, j+

2h4

6!
(Dx

4 +4Dx
2Dy

2+Dy
4)gi, j,

as has already been shown in [1,5,7].
The truncation error for the suggested scheme is of the sixth-order O(h6) on a square mesh

(hx=hy=h) and of the fourth-order O(hx
4, hx

2hy
2, hy

4) on an unequally spaced mesh. The
derivatives in Equation (22) should be calculated numerically. Here, an effective procedure is
suggested, using the nine-point stencil, to compute them with the same high-order accuracy as
the discretization scheme. It is readily seen from the discretization nine-point stencil definition,
Equation(s) (19), that the mixed derivative could be computed using stencil’s node values

Dx
2Dy

2gi, j=
1

hx
2hy

2 (Si, j
g(xy)−2Si, j

g(x)−2Si, j
g(y)+4gi, j)+O(hx

2, hy
2). (23)

Also, we have

Dx
2gi, j=

1
hx

2 (Si, j
g(x)−2gi, j)+O(hx

2),

Dy
2gi, j=

1
hy

2 (Si, j
g(y)−2gi, j)+O(hy

2). (24)
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The second-order accuracy in Equation (24) is enough because (Dx
2 −Dy

2) is multiplied by
(hx

2 −hy
2) in Equation (22). That means that this term is evaluated only on an unequally spaced

mesh when the scheme is of the fourth-order accuracy. The fourth-order derivatives in
Equation (22) could be computed using the original equations (13)

Dx
4gi, j=Dx

2fi, j−Dx
2Dy

2gi, j,

Dy
4gi, j=Dy

2fi, j−Dx
2Dy

2gi, j, (25)

where

fi, j=Í
Ã

Ã

Á

Ä

v

n
Vij

−
v

n
Uij

if gi, j=Uij

if gi, j=Vij

.

Thus, one can see that computing the derivatives in Equation (22) with the aid of the
expressions in Equations (23)–(25) gives for rU and rV the sixth-order accuracy O(h6) on a
square mesh (hx=hy=h) and the fourth-order accuracy O(hx

4, hx
2hy

2, hy
4) on an unequally

spaced mesh.
To illustrate the high-order accuracy of the numerical scheme, the non-dimensional mean

velocity amplitude, gU m
, is shown in Figure 2. The values of gU m

computed from Equation (16)
are presented with successive computation meshes. The close-to-constant behavior of the
high-order accuracy scheme results (solid lines) boldly illustrates the convergence, even on a
coarse grid. On the other hand, it is seen that the results obtained on successive meshes with
the standard second-order accuracy finite difference scheme (dashed lines) are different, and
only the results on the finest grid could be considered as converged. The cases with ah]10 are
more difficult for computations due to the oscillating behavior of the solution. In this case, the
global error on a coarse mesh is high, while the results obtained with the suggested high-order
scheme are practically converged. Figure 3 shows the ratio between the results obtained using
the high-order (HO) and the standard finite difference (FD) schemes. Figure 4 presents the
amplitude gu computed from Equation (17) against the non-dimensional distance from the wall
h=ay. The solid line represents the profile computed with the high-order scheme. One can see
that the results obtained with the standard FD scheme (solid symbols) only on the finest grid
(Nx=Ny=N=40) coincide with the HO scheme results.

4. RESULTS AND DISCUSSION

There are fundamental differences between a pulsating flow induced by low or high frequency
pressure gradient oscillations. Using the asymptotic expansions of the expressions given by
Equations (8) and (9), one obtains for a pulsating flow between two plates the following:

Slow oscillations, ah�1:
fU m

:0,
ft:0,

12mgU m
L/gph2:1,

2gtL/gph:1

Fast oscillations, ah�1:
fU m

:90°,
ft:45°,

12mgU m
L/gph2:0,

2gtL/gph:0.
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Figure 2. Mean velocity amplitude gU m
, for different meshes, Nx=Ny=N.

It follows for slow oscillations that there is no phase lag between the induced fluid motion and
the imposed very slow pressure oscillations. In the fast oscillations case, the mean velocity and
the wall shear stress oscillate with phase lags of 90° and 45° respectively, with respect to the
imposed pressure oscillations.

Figure 3. Ratio gU m

(HO)/gU m

(FD) for different meshes, Nx=Ny=N.
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Figure 4. Amplitude gu of the induced velocity, a/h=1, ah=20. Solid line: numerical results, high-order accuracy
scheme, Nx=Ny=40. Symbols: numerical results, second-order accuracy scheme; dots, Nx=Ny=10; squares,

Nx=Ny=20; triangles, Nx=Ny=40.

The motion of a viscous fluid in a duct caused by pressure gradient oscillations is
characterized also by the depth of penetration of the viscous wave, d= (2n/v)1/2. Two
important limiting cases are possible depending on whether the quantity d is large or small
compared with a characteristic dimension of the duct. Let h, the distance between the walls in
the y-direction, be chosen to be this characteristic dimension. The ratio h/d is, for instance, the
Reynolds number for the flow at hand. Introducing a=d−1= (v/2n)1/2, the Reynolds number
is defined as ah= (v/2n)1/2h. The first limiting case of low frequency oscillations (ah�1)
means that the velocity varies very slowly with time, and the derivative term (u/(t in the
governing equation of motion can therefore, be neglected. Thus, the viscous term in the
governing equation is balanced by the imposed pressure gradient term. Consequently, in this
limiting case, the velocity varies periodically in the same phase as the pressure gradient. In the
opposite case of high frequency oscillations, where the Reynolds number ah, is large, the
viscous term can be neglected everywhere except in the very narrow layers near the walls. The
width of these layers is of the order of magnitude of the depth of penetration of the viscous
wave, d8 (n/v)1/2. This case is typical for boundary layers when, at a certain distance from the
wall, the fluid moves as if it was frictionless. This implies that in this case (ah�1), the
unsteady term (u/(t in the governing equation is balanced (except in the narrow d-layer) by
the imposed oscillating pressure gradient term, i.e. the terms r (u/(t and −(p/(z are of the
same order of magnitude. Therefore, at a large distance from the wall, the fluid is forced to
move with a phase lag of 90° with respect to the exciting pressure gradient.

Calculations for low and high frequency regimes (15ah520) in a rectangular duct with
two different aspect ratios (a/h=1 and 10) were performed. In the following, results appropri-
ate to low (ah=1) and moderate (ah=8) frequencies will be presented and discussed. (Results
for higher frequencies (ah]10) will not be presented, since, as will be shown subsequently (see
Figure 13), their features are similar to those of the moderate frequency, i.e. ah=8.)

The results for a low frequency (ah=1) pulsating flow in a duct of square cross-sectional
shape (a/h=1) are presented in Figure 5. The variation of the pressure gradient with time for
one period is shown in Figure 5(a). The velocity profiles at different time instants of one period
and at different x-locations in the xy-cross-section of the duct are shown in Figure 5(b). For
comparison, the velocity profiles for a one-dimensional flow between two parallel plates, as
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calculated by Equation (4), are shown in Figure 5(c). Figure 5 indicates that the velocity
distribution is in phase with the imposed pressure gradient. The induced velocity amplitude is
seen to be smaller than that for the flow between two parallel plates (compare Figure 5(b) and
(c)). This is due to the increase of the friction effects in the duct. The latter is clearly seen from
the velocity profiles at x-locations close to the side wall: x/a=0.25 (dashed line in Figure 5(b))
and x/a=0.1 (dot-dashed line in Figure 5(b)).

For a rectangular duct with a high aspect ratio (a/h=10), one may expect the velocity
distributions to differ from those of the one-dimensional flow between two parallel plates only
close to the side walls. The results of this case are shown in Figure 6. As shown in Figure 6(b),
the velocity profiles at x/a=0.5 (solid line) and x/a=0.1 (dotted line) practically coincide
with those between two parallel plates (compare with Figure 6(c)). As is evident in Figure 6(b),
close to the side wall, at x/a=0.025 (dashed line) and x/a=0.01 (dot-dashed line), viscous
effects become dominant and as a result the velocity amplitude decreases. From Figure 6, due
to the relatively low frequency of the imposed pressure gradient (ah=1), the induced velocity
is again seen to vary, practically in the same phase as the pressure.

Figures 7 and 8 show the results for a moderate frequency (ah=8) pulsating flow in ducts
with two different cross-sectional shape (a/h=1 and 10). First, the velocity distributions differ
considerably from those obtained for the low frequency case (compare with Figures 5 and 6).
Second, the phase of the induced velocity is shifted differently with respect to the exciting
pressure in the regions close and far from the duct walls. Both these effects are in accordance
with the remarks in the beginning of this section. The velocity profiles at different instants of
one period at different x-locations in the xy-cross-section of the duct, with a square
cross-section (a/h=1), are shown in Figure 7(b). For comparison, in Figure 7(c), the velocity
profiles for a one-dimensional flow between two parallel plates as calculated by Equation (4)

Figure 5. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h=1, ah=1: solid line, x/a=0.5; dashed, x/a=0.25; dot-dashed, x/a=0.1. (c) Flow between

two parallel plates.
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Figure 6. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h=10, ah=1: solid line, x/a=0.5; dot, x/a=0.1; dashed, x/a=0.025; dot-dashed, x/a=0.01.

(c) Flow between two parallel plates.

Figure 7. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h=1, ah=8: solid line, x/a=0.5; dashed, x/a=0.25; dot-dashed, x/a=0.1. (c) Flow between

two parallel plates.
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are shown. Comparing the velocity distributions and the pressure variation with time yields
that the flow at the duct axis (Figure 7(b), solid lines) lags behind that in the near-wall regions.
At the axis, its phase is shifted by 90°, though this phase lag decreases when the side walls are
approached (Figure 7(b), dashed and dot-dashed lines). The results indicate that at certain time
instants, the velocity profiles have maximum values near the wall (Figures 7 and 8). This
non-trivial effect, which is known as Richardson’s ‘annular effect’, has been established
experimentally [10] and analytically [11,12] for high frequency oscillating flows in a pipe. It
implies that the time mean velocity squared has a maximum, which occurs near the pipe wall.
(Recently, the authors have shown analytically [13] that Richardson’s ‘annular effect’ also
takes place for oscillating flows in ducts of arbitrary cross-sectional shapes.) It is interesting to
note that at the middle section (x/a=0.5, solid line in Figure 7(b)), the velocity profile
(amplitude and phase) is practically the same as in the one-dimensional case (Figure 7(c)),
though the duct has a square cross-section. As shown earlier, this is not the case for low
frequency oscillations (Figure 5). This perhaps indicates, that for high-frequency oscillations,
the viscous effects, being localized within a narrow near-wall region, are independent of the
geometry of the duct. For a rectangular duct with a high aspect ratio (a/h=10, Figure 8), the
velocity distributions differ from those of the one-dimensional flow between two parallel plates
only close to the side walls. The velocity profiles at x/a=0.5 and 0.1 (solid lines in Figure 8(b))
completely coincide with those between two parallel plates (Figure 8(c)). Close to the wall, at
x/a=0.025 and 0.01 (dashed and dot-dashed lines respectively, in Figure 8(b)), viscous effects
developing on the side wall are important and the flow becomes essentially two-dimensional.

The velocity variation with time at different points (x, h/2) along the central y=h/2
plane (see Figure 1) for a low frequency (ah=1) pulsating flow in a duct of square
cross-sectional shape (a/h=1) is presented in Figure 9(b). The variation of the frictional force,

Figure 8. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h=10, ah=8: solid line, x/a=0.5; dashed, x/a=0.025; dot-dashed, x/a=0.01. (c) Flow

between two parallel plates.
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Figure 9. Pulsating duct flow, a/h=1, ah=1. (a) Pressure gradient variation with time. (b) Velocity at y/h=0.5: solid
line, x/a=0.5; dashed, x/a=0.25; dot-dashed, x/a=0.1. (c) Wall surface shear at y=0: solid line, x/a=0.5; dashed,

x/a=0.25; dot-dashed, x/a=0.1.

twall=m (u/(y �y=0, with time for one period at different x-locations at the wall is plotted in
Figure 9(c). It is seen clearly that the velocity and the wall friction distributions are in phase
with the imposed pressure gradient. The amplitude of the induced velocity and the wall
frictional force decrease upon approaching the side wall (Figure 9(b) and (c), x/a=0.25,
dashed lines, and x/a=0.1, dot-dashed lines). The latter is due to the flow approaching the
duct corner, where the frictional force is zero.

For a low frequency (ah=1) pulsating flow in a rectangular duct with a high aspect ratio
(a/h=10), one may expect that the velocity and wall frictional force distributions differ from
those at the center (x/a=0.5, solid lines in Figure 10(b) and (c)) only close to the side walls.
The results of this case are shown in Figure 10. As expected for a low frequency case, the
velocity and the wall friction variations with time are practically in phase with the imposed
pressure gradient. As seen in Figure 10, the variation with time of the velocity and the wall
friction at x/a=0.5 (solid line) and x/a=0.1 (short-dashed line) practically coincide. Only
close to the side wall, at x/a=0.025 and 0.01 (dashed and dot-dashed lines respectively, Figure
10(a) and (b)), the variations with time of the velocity and the wall friction differ.

Figure 11(b) shows the velocity variation with time at different points (x, h/2) along the
central y=h/2 plane (see Figure 1) for a moderate frequency (ah=8) pulsating flow in a duct
of square cross-sectional shape (a/h=1). The variation of the frictional force with time for one
period at different x-locations at the wall is plotted in Figure 11(c). It is seen that the phases

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 935–950 (1999)



PULSATING FLOW IN A RECTANGULAR DUCT 947

of the velocity and the wall friction variations at the center (x/a=0.5, solid lines in Figure
11(b) and (c)) are shifted by 90° and 45° respectively, with respect to the imposed pressure
gradient. Recall that the same 45° phase lag between the wall shear force and the imposed
pressure oscillations with time occurs for the pulsating flow between two parallel plates. Note
that the dashed lines in Figure 11(b) and (c) show the results computed at x/a=0.25, which
are very close to those at the center (x/a=0.5, solid lines). This means that only very close to
the side wall (x/a=0.1, dot-dashed lines, Figure 11(b) and (c)) do the results differ from those
obtained at the center.

For a duct with a high aspect ratio (a/h=10), the velocity and the wall frictional force
distributions differ from those at the center (x/a=0.5) only close to the side walls. The results
of this case are shown in Figure 12. The variations with time of the velocity and the wall
friction at x/a=0.5 and =0.025 practically coincide. Only very close to the side wall, at
x/a=0.01 (dot-dashed lines in Figure 12(a) and (b)), do the variations with time of the
velocity and the wall friction differ from those at x/a=0.5.

The amplitude and the phase lag of the cross-sectional mean velocity, Um (see Equation (8)),
against ah are plotted in Figure 13. The phase lag, fU m

with respect to the imposed frequency
of the pressure oscillations is shown in Figure 13(a). It is seen that the results for the duct with
a high aspect ratio (a/h=10, dashed line) only slightly differ from those obtained for the
one-dimensional flow between two parallel plates (solid lines). The cross-sectional mean

Figure 10. Pulsating duct flow, a/h=10, ah=1. (a) Pressure gradient variation with time. (b) Velocity at y/h=0.5:
solid line, x/a=0.5; dashed, x/a=0.025; dot-dashed, x/a=0.01. (c) Wall surface shear at y=0: solid line, x/a=0.5;

dashed, x/a=0.025; dot-dashed, x/a=0.01.
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Figure 11. Pulsating duct flow, a/h=1, ah=8. (a) Pressure gradient variation with time. (b) Velocity at y/h=0.5:
solid line, x/a=0.5; dashed, x/a=0.25; dot-dashed, x/a=0.1. (c) Wall surface shear at y=0: solid line, x/a=0.5;

dashed, x/a=0.25; dot-dashed, x/a=0.1.

velocity phase lag computed for a duct with a square cross-section (a/h=1, dot-dashed line)
is affected by two-dimensional effects and differs from that for the one-dimensional flow
between two parallel plates. Recall that for the limiting case of ah�1, the phase lag
fU m
:90°. The non-dimensional quantity b, which is the amplitude gU m

normalized by the
amplitude of the imposed pressure oscillations, gp : 12mgU m

L/gph2, is shown in Figure 13(b). As
it follows from the calculations, the results for a square duct (a/h=1, dot-dashed line) differ
sufficiently from those obtained for the one-dimensional flow between two parallel plates (solid
line), while ahB6. For a rectangular duct with a high aspect ratio (a/h=10, dashed line), the
results only differ slightly from the one-dimensional flow between two parallel plates (solid
line) for already moderate imposed frequency of the pressure gradient oscillations, i.e. ah\3.
The results indicate that the flow characteristics for a rectangular duct with a square
cross-sectional shape (a/h=1) are affected by two-dimensional effects.

In summary, the numerical results, as presented in this study, are in full agreement with the
theoretical discussion in the beginning of this section regarding the physical differences
between the flow response to imposed low and high frequency pressure difference oscillations.
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5. CONCLUSIONS

A pulsating laminar flow of a viscous incompressible liquid in a rectangular duct was
considered. The motion is induced by imposing a pulsating pressure difference. The problem
was solved numerically. For the problem at hand, a high-order-accurate numerical scheme was
used. The truncation error for the suggested scheme is of sixth-order O(h6) on a square mesh
(hx=hy=h) and of fourth-order O(hx

4, hx
2hy

2, hy
4) on an unequally spaced mesh. Different flow

regimes are characterized by a non-dimensional parameter based on the frequency of the
imposed pressure gradient oscillations and the width of the duct. This is the Reynolds number
of the problem at hand, which is defined as ah= (v/2n)1/2h.

Calculations for low and high frequency regimes (15ah520) in a rectangular duct with
different aspect ratios (a/h=1 and 10) were performed. The induced velocity has a phase lag
(shift) with respect to the imposed pressure oscillations, which varies from zero at very slow
oscillations, to 90° at fast oscillations. The influences of the aspect ratio of the rectangular duct
and the imposed pulsating pressure gradient frequency on the phase lag and the amplitude of
the induced oscillating velocity and wall frictional force were analyzed.

Figure 12. Pulsating duct flow, a/h=10, ah=8. (a) Pressure gradient variation with time. (b) Velocity at y/h=0.5:
solid line, x/a=0.5; dashed, x/a=0.025; dot-dashed, x/a=0.01. (c) Wall surface shear at y=0: solid line, x/a=0.5;

dashed, x/a=0.025; dot-dashed, x/a=0.01.
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Figure 13. (a) Phase lag fU m
, and (b) amplitude b=gU m

/(gph2/Lm), of the cross-sectional mean velocity. Solid line,
pulsating flow between two parallel plates; dashed, duct flow with a/h=10; dot-dashed, duct flow with a/h=1.
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